
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

The VerCors Verifier: a Progress Report?

Lukas Armborst1[0000−0001−7565−0954], Pieter Bos1[0009−0003−0240−3305], Lars
van den Haak2[0000−0002−0330−5016], Marieke Huisman1[0000−0003−4467−072X],
Robert Rubbens1[0000−0002−5638−5945], Ömer Şakar1[0000−0003−3457−5446], and

Philip Tasche1[0000−0003−1518−4079]

1 Formal Methods and Tools,
University of Twente, The Netherlands

{l.armborst, p.h.bos, m.huisman, r.b.rubbens,
o.f.o.sakar, p.b.h.tasche}@utwente.nl

2 Software Engineering Technology,
Technical University of Eindhoven, The Netherlands

l.b.v.d.haak@tue.nl

Abstract. This paper gives an overview of the most recent develop-
ments on the VerCors verifier. VerCors is a deductive verifier for con-
current software, written in multiple programming languages, where the
specifications are written in terms of pre-/postcondition contracts us-
ing permission-based separation logic. In essence, VerCors is a program
transformation tool: it translates an annotated program into input for
the Viper framework, which is then used as verification back-end. The
paper discusses the different programming languages and features for
which VerCors provides verification support. It also discusses how the
tool internally has been reorganised to become easily extendible, and to
improve the connection and interaction with Viper. In addition, we also
introduce two tools built on top of VerCors, which support correctness-
preserving transformations of verified programs. Finally, we discuss how
the VerCors verifier has been used on a range of realistic case studies.

1 Introduction

With the ever-growing digitalisation of our society, we depend more and more
on the reliability of the underlying software. To provide guarantees about this
reliability, we need tools that can do a formal analysis directly at the imple-
mentation level of the software. The VerCors verifier [12] contributes to this
goal: it enables the verification of pre-/postcondition contract specifications for
(concurrent) programs, written in a range of different programming languages.

Work on the VerCors verifier started in 2011 [2], focussing initially on the ver-
ification of concurrent Java programs, using permission-based separation logic.
Over time, VerCors has expanded into a verification environment that sup-
ports reasoning about programs in a wide range of different programming lan-
guages. An important design goal of the VerCors verifier was to make a tool
? Work on this project is support by the NWO VICI 639.023.710 Mercedes project
and the NWO TTW 17249 ChEOPS project.

https://doi.org/10.4121/a5f97e07-9f84-4223-b581-6d2606fe07ba

2 Armborst et al.

Fig. 1: Overview of the tool architecture. Tool interface boundaries are indicated
with vertical lines. The circular arrow indicates that AST and error transforma-
tion steps might by applied multiple times. The red X indicates a verification
error, the green checkmark indicates succesful verification.

that (1) would verify a program as is, i.e., without the need to manually sim-
plify the implementation and only requiring additional verification annotations
in comments, and (2) would have a high degree of automation, to make it ac-
cessible to a large group of potential users. Ultimately, VerCors should make
verification available as a part of the build process, similar to type checking.
VerCors is developed as a program transformation tool: it takes as input an
annotated program, and it transforms this in multiple steps into input for the
Viper framework [38], which is an intermediate representation framework for
separation-logic-style specifications. An overview of the architecture is provided
in Figure 1. The transformation is set up in such a way that it is sound but
incomplete: if Viper verifies the program, it is guaranteed that the original pro-
gram satisfies its specification. However, if verification fails the program might
or might not respect its verification annotations.

This paper reports on the recent steps that have been taken to further develop
the VerCors verifier towards its ultimate goals. It describes in particular new
developments on the VerCors verifier since 2017, when the last tool paper on
VerCors was published [12]. Notable developments since then are:

– improved front-end support for programming languages such as Java, C and
OpenCL, described in Section 2.1;

– added front-end support for other programming languages, such as Halide [44],
SystemC [27], LLVM IR [31] and SYCL [58], described in Sections 2.2 and 2.3;

– updated the internals of the tool to improve support for typing and trans-
formation, as well as in the interaction with Viper, described in Section 3;

– a collection of transformation tools built on top of VerCors to step-wise
derive verified, complex implementations, described in Section 4; and

– a wide range of practical case studies to understand how verification can be
used in practice, described in Section 5.

2 New and Improved Language Support

This section describes the progress on programming languages supported by
VerCors. First we describe new features that are provided for languages that

The VerCors Verifier: a Progress Report 3

were already supported by VerCors, namely Java and C/C++, as well as the
improved support to reason about GPU kernels. Next, we describe new languages
for which direct support has been added to VerCors (JavaBIP and SYCL). The
last subsection covers programming languages that are not directly supported
by VerCors, but can be encoded – by VerCors itself, or by an external tool –
into an existing VerCors language: SystemC, LLVM IR and Halide. For these
encodings, we typically transform a program to PVL, which is VerCors’ internal
language. It is similar to Java, supporting classes and methods for example, but
also has additional constructs such as parallel blocks, which we use to prototype
new verification features.

2.1 Improved Existing Language Support

Java: Exceptions. As mentioned above, Java was the first programming language
supported by VerCors. It has support for several non-trivial features of the lan-
guage, such as the import statement, locks (specified using lock invariants),
arrays, instance and static fields.

A missing feature that hindered practical applicability was the support to
reason about exceptions. To improve this, we first added support for exceptional
contracts using signals clauses. Similar to ensures, a signals clause specifies
the postcondition that must hold when an exception of the indicated type is
thrown. In addition, it can also specify properties over the object that is thrown.

Support for exception-related statements and modifiers such as try_catch,
throw and throws is encoded by transforming them in several steps, to keep
the implementation modular. For example, throws modifiers are encoded into
signals clauses, and try_catch and throwing method calls are encoded into
goto’s. After the transformations, the only primitives that remain are goto,
return, requires and ensures. In addition, abrupt termination primitives such
as break and continue are transformed into exceptional statements, such that
they can be handled using the same code that encodes exceptional behaviour.
For more details about the support for exceptions, see [48, 47].

C/C++. Support for basic features of the C and C++ languages works similar to
the verification of those features in Java. In particular, a C/C++ program can
only be verified if it does not have undefined behaviour. However, also C-specific
features had to be covered, such as allocating and freeing memory (malloc and
free), array initialisers, structures, casts between primitive types and implicit
type conversion rules. Furthermore, VerCors now uses the truncated [33] defini-
tion for division and modulo in the C, Java and C++ languages.

GPU kernels: OpenCL/CUDA. VerCors initially supported verifying data race
freedom and functional correctness of GPU kernels using barriers and atomic
operations by manually encoding kernels into PVL (using parallel blocks) [13].
Support for verification directly at the level of the OpenCL [59] or CUDA [35]
program has now been added, by implementing a translation from kernels into
parallel blocks. In addition, support for both dynamic and static local memory

4 Armborst et al.

(called shared memory in CUDA) is added, allowing verification of kernels that
use faster data sharing for threads within the same workgroup. Support for local
and global memory fences for barriers is present for OpenCL, only allowing
redistribution of memory permissions when the appropriate fence is used.

2.2 Newly Supported Frameworks

JavaBIP. VerCors has direct support for JavaBIP [11]. BIP [6] (“Behavior, In-
teraction, Priority”) is a framework for rigorous system design. JavaBIP provides
support for BIP as a Java library. Each JavaBIP class is modelled by a separate
BIP state machine. This connection is made through annotations. The @State
class annotation indicates the possible states, and the @Transition annota-
tion indicates that a method makes a transition. Whenever a transition must
be taken, the JavaBIP runtime engine looks up and executes the corresponding
method. Essentially, the user declaratively specifies the state machine and imple-
ments the transition methods, and JavaBIP provides state machine behaviour.

The BIP methodology assumes that conditions on the behaviours of the
system are encoded by the user in the BIP state machine, e.g. by adding guards to
transitions, and by assuming implicit invariants in the state machine, such as “in
state S, field f is positive”. However, the JavaBIP platform does not provide tool
support to check if an implementation actually guarantees these invariants. To
address this shortcoming, we prototyped verification support for JavaBIP using
VerCors [10]. In the JavaBIP state machine, the user makes implicit invariants
explicit by adding contract annotations on the states and transitions. Guards
and contracts are then verified deductively using VerCors, thus ensuring that
the implementation corresponds to the assumptions for the BIP state machine.

SYCL. SYCL is a high-level programming language that enables the use of
different heterogeneous devices in a single application [58]. It is built in C++

and targets different devices such as CPUs, GPUs and FPGAs. It abstracts
away from the device-specific details (in contrast to e.g. OpenCL for GPUs), by
building on top of existing (lower-level) APIs such as OpenCL, CUDA and HIP.

VerCors provides prototype verification support for a subset of SYCL, fo-
cussing on its basic and nd-range kernels, buffers and data accessors [60]. A con-
tract is specified for the host function and SYCL kernel. VerCors automatically
adds predefined specifications for the various SYCL data types and functions,
and uses the kernel contract to automatically handle the permissions related to
the data transfer and access through SYCL’s buffer and accessor constructs.

2.3 Programming Languages Encoded into VerCors

SystemC. VerCors is able to verify embedded systems at the design stage, as it
supports the hardware/software co-design language SystemC [27]. The VeSUV
tool [57] takes designs written in a widely-used subset of SystemC and encodes
their semantics, as well as the scheduling semantics of SystemC, into PVL. The
user can then add properties to the encoded PVL program and verify them

The VerCors Verifier: a Progress Report 5

normally with VerCors. This approach allows VerCors to verify both local and
global safety properties and to reason about the timing behaviour of the system,
which is typically difficult for deductive verifiers.

LLVM IR. VCLLVM is a prototype tool that adds support for LLVM IR [31] to
VerCors [41, 40]. Building verification support for LLVM IR is part of a larger
project that aims to develop verification support for any programming language
that compiles into LLVM IR. VCLLVM takes as input an annotated LLVM IR
file. It uses the existing LLVM infrastructure to parse and analyse the program.
The program and the annotations are then encoded by VCLLVM into input for
VerCors, and VerCors is used for the verification.

Halide. HaliVer [24] is a tool that adds verification support for Halide [44] and
uses VerCors as its verifier. Halide is a Domain Specific Language designed to
write high-performance image and tensor processing code. Halide decouples the
algorithmic part, which defines what should be computed, from the schedule,
which defines how a computation should be optimised. HaliVer makes it possible
to add and verify annotations that describe the behaviour of Halide programs.
Verification can be done at two levels: (1) front-end verification encodes the
algorithmic part of the Halide program directly into PVL, together with its
annotations, to verify its functional correctness, while (2) back-end verification
transforms the annotations to match the Halide-generated and optimised C code,
which VerCors can then verify. This allows to verify complex optimised code,
without formal verification of the whole Halide compiler. The HaliVer tool is
integrated into the Halide compiler and transforms the annotations similar to
how the compiler transforms the code.

3 VerCors Implementation Changes

In order to improve the user experience for VerCors users, as well as the extend-
ability of the tool, some major updates to its implementation have been made.
We describe the important changes.

Internal Transformation Steps. The effect of VerCors as a program transformer
is achieved by a sequence of approximately eighty rewrite steps. Each step de-
scends into the program tree recursively and rewrites nodes where appropriate.
In earlier versions of VerCors there were several transformations containing over
1000 lines of code each, which made it hard to guarantee that they were cor-
rect rewrites. We reorganised the internal structure of VerCors and split those
large transformations into multiple small rewrites. The smaller steps also help
facilitate abstractions that newly supported languages like SYCL can build on.

Name Resolution Earlier versions of VerCors used text names, which ended up
with a large number of prefixes. If one was missing, it was hard to see which
rewrite caused that. Schemes with de Bruijn-indexed names[17] are thwarted

6 Armborst et al.

by declarations shifting around, and forgetting to account for it. Therefore, we
made the rewriters blind to the declaration names. Instead, direct references
to the referred declaration are stored in the tree. This means that names are
resolved once at the start, and from then on there is nothing to resolve anymore:
the name is a pointer to the declaration itself. When rewriting such a reference
we look up the successor of the referent in a map. The circularity of this approach
is resolved by storing the reference as a lazily evaluated value.

Typing Coercions To ensure that all (intermediate) program trees during parsing
and rewriting are correct, it is imperative that the program is well-typed. This
is arranged by having each node in the tree assert typing constraints on its sub-
nodes using the internal typing rules of VerCors. Moreover, certain rewriters
need to know what typing rules were applied to the current node for it to be
allowed in its current position, for example, if we want to store the sequence
{null, null, null} in a variable of type seq<int[]>. This is achieved by
temporarily storing the typing rule(s) that are applied to a node in the program
tree, as a coercion. In this case, the sequence stores a coercion capturing that
“seq<null_type> can be mapped to seq<int[]>, because null_type can be
coerced to int[]”. As a result, the rewriter for arrays only needs to consider
places with the appropriate coercions.

Triggers. A known challenge in verification are quantifiers, which need instanti-
ation in the proof. In the SMT community, triggers are used to manually provide
hints about potential instantiations [21]. Initially, VerCors automatically gener-
ated triggers for quantifiers. However, for complicated examples it is important
to have explicit control over triggers, to avoid matching loops [8]. Therefore,
while VerCors still generates triggers, VerCors now also allows the user to spec-
ify triggers explicitly.

To enable the use of triggers for parallel block specifications, additional
rewrites may be necessary. For a parallel block, the annotations are given per
thread, and during the verification process these annotations are quantified over
the range of all threads. However, in some cases this results in quantified formulas
containing arithmetic expressions, which are not allowed in triggers. For example
in the case of a flattened multi-dimensional array, we obtain specifications like:
∀ int i, int j; 0 ≤ i < 8 ∧ 0 ≤ j < 10 ∧ j%2 = 0⇒ A[(j ∗ 8) + i] > 0. We would like
to use the following trigger: A[(j ∗ 8) + i]. However, as arithmetic operators are
not allowed in triggers, this trigger cannot be used. To fix this, VerCors can now
automatically rewrite this expression to ∀ int k; 0 ≤ k < 8 ∗ 10 ∧ (k/8)%2 = 0⇒
A[k] > 0. This quantifier now has the following valid trigger: A[k]. This rewrite
is general, and applies for most surjective mappings from variables to values.

Error Reporting. Errors that are reported about input programs are now mod-
elled close to the input language. Earlier the tool reported simply that a formula
is false, or another technical error from the back-end. We extended the rewriters
to indicate how errors reported in Viper [38] should be translated backwards in
correspondence to the changes that occur in that rewriter. In certain cases such

The VerCors Verifier: a Progress Report 7

Fig. 2: Flame graph render of a verification profile

translations can consist of several steps, which have to be merged/combined, as
rewriters build on abstractions within the internal VerCors language. Essentially,
whenever a transformation creates an AST node that might cause a failure in
the output AST, the transformation also has to define how to map the error
back onto the input AST. The end result is that errors at the SMT level can be
translated back to the input source level at the correct location.

Progress and Profiling. While VerCors is verifying a file, it now occasionally
updates the user interface to show the proof goal it is working on. Since verifica-
tion often gets stuck on a specific proof goal, this is helpful in diagnosing where
the program needs further specifications or fixes. Currently this is reported in a
rather technical manner, but we plan to soon adopt a better model, reporting in
terms of the input program. This is inspired by the approach in the WP interface
of Frama-C [7], where proof goals and their status are reported in line with the
input file before the file is verified.

To keep the verify-edit-verify loop manageable, it also helps to be able to
diagnose the verification time as a whole. For this purpose VerCors can now
output a fine-grained profile, which contains timing information that can later
be rendered to e.g. a flame graph as in Figure 2. The tasks in the profile can be
viewed as a tree structure, where a task is nested under its parent task. Tasks
are divided up from global phases, down to the branch conditions under which
a proof goal is verified. The detailed information about proof goals is supported
through the symbolic execution back-end of Viper.

4 Deriving Verified, Optimised Programs

Program verification is a hard and challenging problem, and verifying a program
that has been optimised for performance can be even harder. To alleviate this
problem, we have developed two program correctness-preserving optimisation
tools on top of VerCors: Alpinist and VeyMont.

8 Armborst et al.

Alpinist. Alpinist is an annotation-aware GPU program optimiser [52]. Part
of the GPU program development cycle is to incrementally optimise the GPU
program for performance. These incremental optimisations are performed on the
source level, prior to compilation. Such optimisations can introduce errors. To ad-
dress this problem, Alpinist automatically applies frequently-used GPU program
optimisations, notably loop unrolling, tiling, kernel fusion, iteration merging, ma-
trix linearisation and data prefetching, in an annotation-aware manner, which
means that besides transforming the GPU program itself, it also transforms the
annotations. The provability of the resulting annotated optimised GPU program
is preserved by this transformation. Alpinist works in four different phases: pars-
ing, applicability checking, transformation and output. The strength of Alpinist’s
approach lies in particular in the applicability checking, where different analysis
techniques, including deductive verification can be used to check whether the
optimisation is indeed applicable, before applying it. An example of an applica-
bility check is whether a loop can be safely unrolled a certain number of times
(as specified by the user): Alpinist unrolls a loop n times only if it can prove
that the loop is executed at leastn times.

VeyMont. VeyMont supports the derivation of correct parallel programs from
sequential programs [16]. First, a sequential global program is verified. The se-
quential program has a restricted form, similar to choreographic programs and
session types [36, 26]. A sequential VeyMont program contains endpoints, com-
munication statements between these endpoints, conditional statements, and
loops, where for conditional statements all endpoints must agree on which branch
is taken (“branch unanimity”). There are no local variables, instead all state is
encapsulated by the endpoints. VeyMont can also generate permissions, however,
this assumes a simple ownership structure without sharing.

After the global program is verified, VeyMont transforms it into a concur-
rent program, where an implementation is derived for each endpoint by projec-
tion [16]. For example, if an endpoint is in a receiving position in a communica-
tion statement, the projection will produce code that reads from the receiving
end of the channel. If an endpoint is not involved in a communication, the pro-
jection will produce a no-op. The meta-theory behind VeyMont shows that this
transformed program behaves in the same way as the sequential program [29].
In future work, we want to make VeyMont usable for a larger class of programs,
in particular by providing support for the user to specify permissions, and by
allowing parametrisation of global programs over the number of endpoints.

5 Case Studies

In order to evaluate and improve the usability and applicability of VerCors, we
have developed a number of case studies using VerCors over the last years.

The VerCors Verifier: a Progress Report 9

5.1 Tunnel Control Software Components

In collaboration with the company Technolution3, several Java components of a
tunnel control system were analysed with VerCors. The architecture of the soft-
ware is governed by the Dutch tunnel standard specification (called BSTTI) [45].
First, we investigated the connection between the BSTTI and the implementa-
tion [42]. Next, we looked into a benign but unexplained runtime behaviour of
the control software implementation [37]. Technolution suspected there was a
concurrency bug in the code, but had not yet found a likely explanation.

After analysis and annotating the Java code, two possible explanations were
found, and later confirmed by Technolution. First, there was a mutable internal
data structure, which was accidentally aliased into a reference which was as-
sumed to be immutable. Second, several methods allowed inspection and hence
the leaking of an internal data structure, which was not designed to be thread
safe. The collaboration with Technolution strengthened our ideas about what is
needed for further adoption of verification in industry, as we not only encoun-
tered the problems ourselves, but also were able to confirm these findings with
Technolution. These ideas are: language support has to be improved, code writ-
ten without verification in mind is difficult to verify, and ultimately verification
should be part of the development chain.

5.2 Verification of Red-Black Trees and Their Parallel Merge

Another case study inspired by industrial code, this time from NLnet Labs4, in-
volved the verification of red-black (RB) trees. In the industrial C code, data was
parsed by several threads concurrently, each constructing its own red-black tree.
Afterwards, all those trees are merged in parallel into one. As a first step, Nguyen
in his master thesis [39] implemented an RB tree in Java and verified parts of
its functionality. This was later extended by verifying the delete functionality,
as well as a version of the parallel merging process [4]. It uses a linked-list data
structure to store batches of RB tree nodes, prepared by a producer thread and
queueing for a consumer thread. This case study particularly highlights the use
of two concepts supported by VerCors: (1) The producer-consumer pattern was
proved using ghost variables, i.e. variables that only exist for specification and
verification, and are not part of the executable code. While ghost variables are
not unique to VerCors, the case study provides a useful example how they can
assist in verifying concurrent programs in VerCors. (2) The delete operator was
verified using the separating implication operator (“magic wand”), which is the
separation logic counterpart to the logical implication “⇒” [14, 53]. Many tools
based on separation logic do not support the magic wand, but this case study
shows its usefulness.

3 https://www.technolution.com/
4 https://nlnetlabs.nl/

https://www.technolution.com/
https://nlnetlabs.nl/

10 Armborst et al.

5.3 GPU Case Studies

We developed several verification case studies for GPU code. Notably, we studied
the verification of various prefix sum implementations, which is a frequently used
library function for GPU kernels [51]. After that, we verified two other GPU al-
gorithms (Parallel Stream Compaction and Summed-Area Table) that use prefix
sum, to show how to verify code reusing existing verification results [50]. Initially,
we verified encodings of the algorithms in PVL, but to show practical applica-
bility of our approach, we also verified CUDA versions for most of them [49].
These case studies helped us to improve our GPU support and understand how
these proofs work.

5.4 Student Projects

Several students have done case studies with VerCors. We find these student
projects important, as they show the usability of VerCors for users who are not
involved in the development of VerCors.

Sequential SCC Algorithm. The strongly connected components (SCC) algo-
rithm finds the maximal subsets of nodes in a directed graph, such that every
node in the component can reach any other node in the component, without
leaving the component. It is an important ingredient for many model checking
algorithms, and thus its correctness is essential. We had two student projects on
the verification of a variation of Tarjan’s SCC algorithm [56] in PVL. Hollan-
der [25] provided an overall outline of the correctness proof, which was proven
correct with VerCors, however using some unproven lemmas. Boerman [15] then
followed up on this, and proved two of these remaining lemmas, to complete the
soundness proof of the algorithm. In addition, Boerman identified several bot-
tlenecks that slowed down the proof, and documented how they were resolved.

Distributed Locks. An implementation of a distributed re-entrant lock was veri-
fied to be memory safe and functionally correct by Ledelay [32]. The case study
was provided by the company BetterBe5. To make verification tractable, Ledelay
split up the implementation into four intermediate versions of increasing com-
plexity, adding more aspects of the original code of BetterBe in each layer. The
first layer was based on an earlier verified re-entrant lock [3]. The second layer
added read/write functionality to the lock, and the third layer added an abstrac-
tion for a database. Finally, the fourth phase added a “fail-fast” optimisation,
where a lock can safely skip a database query in certain cases. Layers one and
two were fully verified. Verification of the later layers was not completed due
to time constraints. During verification, the multiple layers of abstraction some-
times made verification slower, or required additional verification annotations in
other places. This was important input to improve the performance of VerCors.

5 https://www.betterbe.com/

https://www.betterbe.com/

The VerCors Verifier: a Progress Report 11

Other Student Projects. Sessink verified (parts of) the implementation of the
ArrayList class of Java’s standard library [54]. This is relevant for verifying real-
life code bases, which often make use of library features. Budde verified Kahn’s
topological sorting algorithm [18]. Like the SCC algorithm above, this is a base
component in more complex procedures, such as task scheduling.

6 Conclusions, Related Work and Future Work

This paper gave an overview of recent work around the VerCors verifier. We
described how we improved the support for programming languages that can be
reasoned about, as well as the internals and verification support of the tool. We
also discussed various case studies, which demonstrate the usability of the tool.

Related Work. There are several other deductive program verifiers for high-level
programs, such as KeY [1], Dafny [34], OpenJML [20] Why3 [23], VeriFast [28],
Frama-C [7], Whiley [43] RESOLVE [55] and the verifiers that are built on top
of Viper, such as Nagini [22], Prusti [5] and Gobra [61]. The main characteristics
that distinguish VerCors from these other tools are its focus on concurrency (only
a few other verifiers, such as VeriFast and the Viper-based Gobra and Nagini,
also support this), and its focus on extendability and support for many different
programming languages and concurrency paradigms. However, we are often in-
spired by verification features and how they are built into other tools. There are
also some tools that focus specifically on the analysis of GPU programs, such as
GPUVerify [9] and Faisal [19]. They tailor their verification support specifically
to GPU programs, whereas VerCors is fully general.

There also is related work on developing verification theories for concurrent
software, such as Iris [30] and TaDa [46]. These form an inspiration for the ver-
ification logic supported by VerCors. However, our approach ultimately focuses
on the applicability of our techniques, rather than covering all edge cases by
developing a fully generic verification technique.

Future Work. Annotation generation is an important aspect of future work.
HaliVer, Alpinist and VeyMont already address this for specific cases, but we
also plan to develop techniques to generate annotations from scratch. Further,
we would like to exploit the generality of VerCors further, to make it easier to
support new programming languages. One future project is to investigate if we
can use support for LLVM IR to develop verifiers for any language that compiles
into LLVM IR. Finally, we continuously work on improving VerCors’ usability.

References

[1] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ul-
brich. Deductive Software Verification – The KeY Book. Vol. 10001. Lec-
ture Notes in Computer Science. Springer International Publishing, 2016.
isbn: 9783319498126. doi: 10.1007/978-3-319-49812-6.

https://doi.org/10.1007/978-3-319-49812-6

12 Armborst et al.

[2] A. Amighi, S. Blom, M. Huisman, and M. Zaharieva-Stojanovski. “The
VerCors Project: Setting Up Basecamp”. In: Programming Languages meets
Program Verification (PLPV 2012). ACM, 2012, pp. 71–82. doi: 10.1145/
2103776.2103785.

[3] A. Amighi. “Specification and verification of synchronisation classes in
Java: A practical approach”. PhD thesis. University of Twente, 2018. doi:
10.3990/1.9789036544399.

[4] L. Armborst and M. Huisman. “Permission-Based Verification of Red-
Black Trees and Their Merging”. In: 2021 IEEE/ACM 9th International
Conference on Formal Methods in Software Engineering (FormaliSE). 2021,
pp. 111–123. doi: 10.1109/FormaliSE52586.2021.00017.

[5] V. Astrauskas, A. Bílý, J. Fiala, Z. Grannan, C. Matheja, P. Müller, F.
Poli, and A. J. Summers. “The Prusti Project: Formal Verification for
Rust”. In: NASA Formal Methods. Ed. by J. V. Deshmukh, K. Havelund,
and I. Perez. Springer International Publishing, 2022, pp. 88–108. isbn:
978-3-031-06773-0. doi: 10.1007/978-3-031-06773-0_5.

[6] A. Basu, M. Bozga, and J. Sifakis. “Modeling Heterogeneous Real-time
Components in BIP”. In: Fourth IEEE International Conference on Soft-
ware Engineering and Formal Methods (SEFM’06). 2006, pp. 3–12. doi:
10.1109/SEFM.2006.27.

[7] P. Baudin, F. Bobot, D. Bühler, L. Correnson, F. Kirchner, N. Kosmatov,
A. Maroneze, V. Perrelle, V. Prevosto, J. Signoles, and N. Williams. “The
dogged pursuit of bug-free C programs: the Frama-C software analysis
platform”. In: Commun. ACM 64.8 (2021), pp. 56–68. doi: 10.1145/
3470569.

[8] N. Becker, P. Müller, and A. J. Summers. “The Axiom Profiler: Under-
standing and debugging SMT quantifier instantiations”. In: Tools and Al-
gorithms for the Construction and Analysis of Systems: 25th International
Conference, TACAS 2019, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019, Prague, Czech Repub-
lic, April 6–11, 2019, Proceedings, Part I. Ed. by T. Vojnar and L. Zhang.
Springer. 2019, pp. 99–116. doi: 10.1007/978-3-030-17462-0_6.

[9] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson. “GPU-
Verify: a verifier for GPU kernels”. In: Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
and Applications. OOPSLA ’12. ACM, 2012, pp. 113–132. doi: 10.1145/
2384616.2384625.

[10] S. Bliudze, P. van den Bos, M. Huisman, R. Rubbens, and L. Safina. “Java-
BIP meets VerCors: Towards the Safety of Concurrent Software Systems
in Java”. In: Fundamental Approaches to Software Engineering. Ed. by L.
Lambers and S. Uchitel. Springer Nature Switzerland, 2023, pp. 143–150.
isbn: 978-3-031-30826-0. doi: 10.1007/978-3-031-30826-0_8.

[11] S. Bliudze, A. Mavridou, R. Szymanek, and A. Zolotukhina. “Exogenous
coordination of concurrent software components with JavaBIP”. In: Soft-
ware: Practice and Experience 47.11 (2017), pp. 1801–1836. doi: 10.1002/

https://doi.org/10.1145/2103776.2103785
https://doi.org/10.1145/2103776.2103785
https://doi.org/10.3990/1.9789036544399
https://doi.org/10.1109/FormaliSE52586.2021.00017
https://doi.org/10.1007/978-3-031-06773-0_5
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569
https://doi.org/10.1007/978-3-030-17462-0_6
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1007/978-3-031-30826-0_8
https://doi.org/10.1002/spe.2495

The VerCors Verifier: a Progress Report 13

spe.2495. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/spe.2495.

[12] S. Blom, S. Darabi, M. Huisman, and W. Oortwijn. “The VerCors Tool
Set: Verification of Parallel and Concurrent Software”. In: integrated For-
mal Methods 2017. Ed. by N. Polikarpova and S. Schneider. LNCS 10510.
Springer, 2017, pp. 102 –110. doi: 10.1007/978-3-319-66845-1_7.

[13] S. Blom, M. Huisman, and M. Mihelčić. “Specification and Verification of
GPGPU programs”. In: Science of Computer Programming 95 (3 2014),
pp. 376–388. issn: 0167-6423. doi: 10.1016/j.scico.2014.03.013.

[14] S. Blom and M. Huisman. “Witnessing the elimination of magic wands”.
In: International Journal on Software Tools for Technology Transfer 17.6
(2015), pp. 757–781. issn: 1433-2787. doi: 10.1007/s10009-015-0372-3.
url: https://doi.org/10.1007/s10009-015-0372-3.

[15] J. Boerman. “Formal verification of a sequential SCC algorithm”. MA
thesis. University of Twente, 2023. url: http://essay.utwente.nl/
94474/.

[16] P. van den Bos and S. Jongmans. “VeyMont: Parallelising Verified Pro-
grams Instead of Verifying Parallel Programs”. In: Formal Methods. Ed.
by M. Chechik, J. Katoen, and M. Leucker. Springer International Pub-
lishing, 2023, pp. 321–339. isbn: 978-3-031-27481-7. doi: 10.1007/978-
3-031-27481-7_19.

[17] N. G. de Bruijn. “Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem”. In: Indagationes Mathematicae (Proceedings). Vol. 75. 5.
Elsevier. 1972, pp. 381–392. doi: 10.1016/1385-7258(72)90034-0.

[18] N. Budde. Verified version of Kahn’s topological sorting algorithm. Ac-
cessed 17 Jan 2024. 2023. url: https://github.com/utwente-fmt/
vercors/tree/5e3eb17/examples/concepts/algo/KahnsTopologicalSort.
pvl.

[19] T. Cogumbreiro, J. Lange, D. L. Z. Rong, and H. Zicarelli. “Checking Data-
Race Freedom of GPU Kernels, Compositionally”. In: Computer Aided
Verification - 33rd International Conference, CAV 2021, Virtual Event,
July 20-23, 2021, Proceedings, Part I. Ed. by A. Silva and K. R. M.
Leino. Vol. 12759. Lecture Notes in Computer Science. Springer, 2021,
pp. 403–426. doi: 10.1007/978-3-030-81685-8_19. url: https:
//doi.org/10.1007/978-3-030-81685-8_19.

[20] D. Cok. “OpenJML: Software verification for Java 7 using JML, OpenJDK,
and Eclipse”. In: 1st Workshop on Formal Integrated Development Envi-
ronment, (F-IDE). Ed. by C. Dubois, D. Giannakopoulou, and D. Méry.
Vol. 149. EPTCS. 2014, pp. 79–92. doi: 10.4204/EPTCS.149.8. url:
http://dx.doi.org/10.4204/EPTCS.149.

[21] C. Dross, S. Conchon, and A. Paskevich. Reasoning with Triggers. Research
Report RR-7986. INRIA, June 2012, p. 29. url: https://inria.hal.
science/hal-00703207.

https://doi.org/10.1002/spe.2495
https://doi.org/10.1002/spe.2495
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2495
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2495
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1016/j.scico.2014.03.013
https://doi.org/10.1007/s10009-015-0372-3
https://doi.org/10.1007/s10009-015-0372-3
http://essay.utwente.nl/94474/
http://essay.utwente.nl/94474/
https://doi.org/10.1007/978-3-031-27481-7_19
https://doi.org/10.1007/978-3-031-27481-7_19
https://doi.org/10.1016/1385-7258(72)90034-0
https://github.com/utwente-fmt/vercors/tree/5e3eb17/examples/concepts/algo/KahnsTopologicalSort.pvl
https://github.com/utwente-fmt/vercors/tree/5e3eb17/examples/concepts/algo/KahnsTopologicalSort.pvl
https://github.com/utwente-fmt/vercors/tree/5e3eb17/examples/concepts/algo/KahnsTopologicalSort.pvl
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.4204/EPTCS.149.8
http://dx.doi.org/10.4204/EPTCS.149
https://inria.hal.science/hal-00703207
https://inria.hal.science/hal-00703207

14 Armborst et al.

[22] M. Eilers and P. Müller. “Nagini: A Static Verifier for Python”. In: Com-
puter Aided Verification - 30th International Conference, CAV 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part I. Ed. by H. Chockler and G.Weissenbacher.
Vol. 10981. Lecture Notes in Computer Science. Springer, 2018, pp. 596–
603. doi: 10.1007/978-3-319-96145-3_33.

[23] J.-C. Filliâtre and A. Paskevich. “Why3—Where Programs Meet Provers”.
In: ESOP. Ed. by M. Felleisen and P. Gardner. Vol. 7792. LNCS. Springer,
Mar. 2013, pp. 125–128. doi: 10.1007/978-3-642-37036-6_8.

[24] L. van den Haak, A. Wijs, M. Huisman, and M. van den Brand. “HaliVer:
Deductive Verification and Scheduling Languages Join Forces”. In: TACAS
2024. LNCS. Springer, 2024.

[25] J. Hollander. “Verification of a model checking algorithm in VerCors”. MA
thesis. University of Twente, 2021. url: http://essay.utwente.nl/
88268/.

[26] K. Honda, V. T. Vasconcelos, and M. Kubo. “Language Primitives and
Type Discipline for Structured Communication-Based Programming”. In:
Programming Languages and Systems - ESOP’98, 7th European Sympo-
sium on Programming, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal,
March 28 - April 4, 1998, Proceedings. Ed. by C. Hankin. Vol. 1381.
Lecture Notes in Computer Science. Springer, 1998, pp. 122–138. doi:
10.1007/BFB0053567.

[27] IEEE Standards Association. IEEE Std. 1666–2011, Open SystemC Lan-
guage Reference Manual. IEEE Press. 2011. url: https://doi.org/10.
1109/IEEESTD.2012.6134619.

[28] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F.
Piessens. “VeriFast: A powerful, sound, predictable, fast verifier for C
and Java”. In: NASA Formal Methods Symposium. Ed. by M. Bobaru,
K. Havelund, G. J. Holzmann, and R. Joshi. Springer. 2011, pp. 41–55.
doi: 10.1007/978-3-642-20398-5_4.

[29] S. Jongmans and P. van den Bos. “A Predicate Transformer for Chore-
ographies - Computing Preconditions in Choreographic Programming”. In:
Programming Languages and Systems - 31st European Symposium on Pro-
gramming, ESOP 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings. Ed. by I. Sergey. Vol. 13240. Lecture Notes
in Computer Science. Springer, 2022, pp. 520–547. doi: 10.1007/978-3-
030-99336-8_19.

[30] R. Jung, R. Krebbers, J. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer.
“Iris from the ground up: A modular foundation for higher-order concur-
rent separation logic”. In: Journal of Functional Programming 28 (2018).
doi: 10.1017/S0956796818000151.

[31] C. Lattner and V. Adve. “LLVM: A compilation framework for lifelong
program analysis & transformation”. In: International Symposium on Code

https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1007/978-3-642-37036-6_8
http://essay.utwente.nl/88268/
http://essay.utwente.nl/88268/
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1017/S0956796818000151

The VerCors Verifier: a Progress Report 15

Generation and Optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–86.
doi: 10.5555/977395.977673.

[32] J. Ledelay. “Verification of Distributed Locks: a Case Study”. MA thesis.
University of Twente, 2023. url: http://essay.utwente.nl/95192/.

[33] D. Leijen.Division and Modulus for Computer Scientists. 2003. url: https:
//www.microsoft.com/en-us/research/publication/division-
and-modulus-for-computer-scientists/.

[34] K. Leino. “Accessible Software Verification with Dafny”. In: IEEE Software
34.6 (2017), pp. 94–97. doi: 10.1109/MS.2017.4121212.

[35] L. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. “NVIDIA Tesla:
A Unified Graphics and Computing Architecture”. In: IEEE Micro 28.2
(2008), pp. 39–55. doi: 10.1109/MM.2008.31.

[36] F. Montesi. Introduction to Choreographies. Cambridge University Press,
2023. doi: 10.1017/9781108981491.

[37] R. E. Monti, R. Rubbens, and M. Huisman. “On Deductive Verification of
an Industrial Concurrent Software Component with VerCors”. In: Lever-
aging Applications of Formal Methods, Verification and Validation. Ver-
ification Principles. ISoLA 2022. Ed. by T. Margaria and B. Steffen.
Vol. 13701. LNCS. Springer International Publishing, 2022, pp. 517–534.
isbn: 978-3-031-19849-6. doi: 10.1007/978-3-031-19849-6_29.

[38] P. Müller, M. Schwerhoff, and A. Summers. “Viper - A Verification Infras-
tructure for Permission-Based Reasoning”. In: Verification, Model Check-
ing, and Abstract Interpretation. VMCAI. Ed. by B. Jobstmann and K. R. M.
Leino. Springer Berlin Heidelberg, 2016. doi: 10.1007/978- 3- 662-
49122-5_2.

[39] H. Nguyen. “Formal verification of a red-black tree data structure”. MA
thesis. University of Twente, 2019. url: http://essay.utwente.nl/
77569/.

[40] D. van Oorschot. “VCLLVM: A Transformation Tool for LLVM IR pro-
grams to aid Deductive Verification”. MA thesis. University of Twente,
2023. url: http://essay.utwente.nl/96536/.

[41] D. van Oorschot, M. Huisman, and Ö. Şakar. “First Steps towards Deduc-
tive Verification of LLVM IR”. In: FASE 2024. LNCS. Springer, 2024.

[42] W. Oortwijn and M. Huisman. “Formal Verification of an Industrial Safety-
Critical Traffic Tunnel Control System”. In: integreated Formal Methods
(iFM) 2019. Ed. by W. Ahrendt and S. L. T. Tarifa. Vol. 11918. LNCS.
Springer, 2019. doi: 10.1007/978-3-030-34968-4_23.

[43] D. J. Pearce, M. Utting, and L. Groves. “An Introduction to Software Veri-
fication with Whiley”. In: Engineering Trustworthy Software Systems - 4th
International School, SETSS 2018, Chongqing, China, April 7-12, 2018,
Tutorial Lectures. Ed. by J. P. Bowen, Z. Liu, and Z. Zhang. Vol. 11430.
Lecture Notes in Computer Science. Springer, 2018, pp. 1–37. doi: 10.
1007/978-3-030-17601-3_1.

[44] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe. “Halide: a language and compiler for optimizing parallelism, lo-

https://doi.org/10.5555/977395.977673
http://essay.utwente.nl/95192/
https://www.microsoft.com/en-us/research/publication/division-and-modulus-for-computer-scientists/
https://www.microsoft.com/en-us/research/publication/division-and-modulus-for-computer-scientists/
https://www.microsoft.com/en-us/research/publication/division-and-modulus-for-computer-scientists/
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1017/9781108981491
https://doi.org/10.1007/978-3-031-19849-6_29
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
http://essay.utwente.nl/77569/
http://essay.utwente.nl/77569/
http://essay.utwente.nl/96536/
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1007/978-3-030-17601-3_1
https://doi.org/10.1007/978-3-030-17601-3_1

16 Armborst et al.

cality, and recomputation in image processing pipelines”. In: Acm Sigplan
Notices. PLDI ’13 48.6 (2013), pp. 519–530. doi: 10.1145/2491956.
2462176.

[45] Rijkswaterstaat. Landelijke Tunnelstandaard (National Tunnel Standard).
https://standaarden.rws.nl/link/standaard/6080. Accessed 17
Jan 2024.

[46] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. “TaDA: A Logic for
Time and Data Abstraction”. In: European Conference on Object-Oriented
Programming (ECOOP). Vol. 8586. LNCS. Springer, 2014. doi: 10.1007/
978-3-662-44202-9_9.

[47] R. Rubbens. “Improving Support for Java Exceptions and Inheritance in
VerCors”. MA thesis. University of Twente, 2020. url: http://essay.
utwente.nl/81338/.

[48] R. Rubbens, S. Lathouwers, and M. Huisman. “Modular Transformation of
Java Exceptions Modulo Errors”. In: Formal Methods for Industrial Critical
Systems - 26th International Conference, FMICS 2021, Paris, France, Au-
gust 24-26, 2021, Proceedings. Ed. by A. Lluch-Lafuente and A. Mavridou.
Vol. 12863. Lecture Notes in Computer Science. Springer, 2021, pp. 67–84.
doi: 10.1007/978-3-030-85248-1_5.

[49] M. Safari and M. Huisman. “Formal verification of parallel prefix sum and
stream compaction algorithms in CUDA”. In: Theor. Comput. Sci. 912
(2022), pp. 81–98. doi: 10.1016/J.TCS.2022.02.027.

[50] M. Safari and M. Huisman. “Formal Verification of Parallel Stream Com-
paction and Summed-Area Table Algorithms”. In: Theoretical Aspects of
Computing – ICTAC 2020. Ed. by V. K. I. Pun, V. Stolz, and A. Simao.
Springer, 2020, pp. 181–199. doi: 10.1007/978-3-030-64276-1_10.

[51] M. Safari, W. Oortwijn, S. Joosten, and M. Huisman. “Formal verification
of parallel prefix sum”. In: NASA Formal Methods Symposium. Ed. by R.
Lee, S. Jha, A. Mavridou, and D. Giannakopoulou. Springer, 2020, pp. 170–
186. doi: 10.1007/978-3-030-55754-6_10.

[52] Ö. Şakar, M. Safari, M. Huisman, and A. Wijs. “Alpinist: An Annotation-
Aware GPU Program Optimizer”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Pro-
ceedings, Part II. Ed. by D. Fisman and G. Rosu. Vol. 13244. Lecture Notes
in Computer Science. Springer, 2022, pp. 332–352. doi: 10.1007/978-3-
030-99527-0_18.

[53] M. Schwerhoff and A. J. Summers. “Lightweight Support for Magic Wands
in an Automatic Verifier”. In: 29th European Conference on Object-Oriented
Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic. Ed.
by J. T. Boyland. Vol. 37. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015, pp. 614–638. doi: 10.4230/LIPICS.ECOOP.2015.614.
url: https://doi.org/10.4230/LIPIcs.ECOOP.2015.614.

https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://standaarden.rws.nl/link/standaard/6080
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-44202-9_9
http://essay.utwente.nl/81338/
http://essay.utwente.nl/81338/
https://doi.org/10.1007/978-3-030-85248-1_5
https://doi.org/10.1016/J.TCS.2022.02.027
https://doi.org/10.1007/978-3-030-64276-1_10
https://doi.org/10.1007/978-3-030-55754-6_10
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.4230/LIPICS.ECOOP.2015.614
https://doi.org/10.4230/LIPIcs.ECOOP.2015.614

The VerCors Verifier: a Progress Report 17

[54] J. Sessink. Verified version of Java’s ArrayList. Accessed 17 Jan 2024.
2022. url: https : / / github . com / utwente - fmt / vercors / tree /
5e3eb17/examples/concepts/arrays/ArrayList.java.

[55] M. Sitaraman and B. W. Weide. “A Synopsis of Twenty Five Years of
RESOLVE PhD Research Efforts: Software Development Effort Estimation
Using Ensemble Techniques”. In: ACM SIGSOFT Softw. Eng. Notes 43.3
(2018), p. 17. doi: 10.1145/3229783.3229794.

[56] R. E. Tarjan. “Depth-First Search and Linear Graph Algorithms”. In:
SIAM J. Comput. 1.2 (1972), pp. 146–160. doi: 10.1137/0201010.

[57] P. Tasche, R. E. Monti, S. E. Drerup, P. Blohm, P. Herber, and M. Huis-
man. “Deductive Verification of Parameterized Embedded Systems mod-
eled in SystemC”. In: 25th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2024). Ed. by R. Dim-
itrova, O. Lahav, and S. Wolff. Vol. 14500. LNCS. Springer, 2024. doi:
10.1007/978-3-031-50521-8_9.

[58] The Khronos SYCL Working Group. SYCLTM 2020 Specification (revision
8). Specification. The Khronos Group, 2023. url: https://registry.
khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf.

[59] The OpenCL 1.2 Specification. Khronos Group, 2011.
[60] E. Wittingen. “Deductive verification for SYCL”. MA thesis. University of

Twente, 2023. url: https://purl.utwente.nl/essays/97976.
[61] F. A. Wolf, L. Arquint, M. Clochard, W. Oortwijn, J. C. Pereira, and P.

Müller. “Gobra: Modular Specification and Verification of Go Programs”.
In: Computer Aided Verification. Ed. by A. Silva and K. R. M. Leino.
Vol. 12759. Lecture Notes in Computer Science. Springer International
Publishing, 2021, pp. 367–379. isbn: 978-3-030-81685-8. doi: 10.1007/
978-3-030-81685-8_17.

https://github.com/utwente-fmt/vercors/tree/5e3eb17/examples/concepts/arrays/ArrayList.java
https://github.com/utwente-fmt/vercors/tree/5e3eb17/examples/concepts/arrays/ArrayList.java
https://doi.org/10.1145/3229783.3229794
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-031-50521-8_9
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://purl.utwente.nl/essays/97976
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1007/978-3-030-81685-8_17

	The VerCors Verifier: a Progress Report

